首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12458篇
  免费   1540篇
  国内免费   1060篇
  2024年   21篇
  2023年   346篇
  2022年   246篇
  2021年   440篇
  2020年   600篇
  2019年   731篇
  2018年   601篇
  2017年   645篇
  2016年   589篇
  2015年   607篇
  2014年   644篇
  2013年   856篇
  2012年   508篇
  2011年   527篇
  2010年   489篇
  2009年   730篇
  2008年   754篇
  2007年   769篇
  2006年   620篇
  2005年   600篇
  2004年   494篇
  2003年   381篇
  2002年   389篇
  2001年   394篇
  2000年   326篇
  1999年   316篇
  1998年   252篇
  1997年   180篇
  1996年   147篇
  1995年   144篇
  1994年   141篇
  1993年   88篇
  1992年   81篇
  1991年   69篇
  1990年   90篇
  1989年   28篇
  1988年   29篇
  1987年   28篇
  1986年   26篇
  1985年   24篇
  1984年   29篇
  1983年   20篇
  1982年   21篇
  1981年   8篇
  1980年   9篇
  1979年   4篇
  1978年   6篇
  1977年   5篇
  1975年   2篇
  1974年   2篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
1.
2.
3.
Conservation management of the Tasmanian flora is now focusing on non-vascular plants. Major problems include the low level of information on the composition of the flora and the low number of competent specialists available to deal with the plants. Collation of information from literature and from collections in herbaria is required to establish exactly which data are available and their reliability. An environmental domain analysis covering all ecosystems would indicate which environments were under-represented or absent from current reserves and where needs for conservation lie. Within practical time-frames, this process is probably the best method of capturing unknown components of the flora whilst also catering for widespread species and those closely associated with particular environments. It also incorporates regional variability. Minor habitats, which are often floristically rich, and very rare species are best dealt with on an individual basis. Basic research into taxonomy and ecology is paramount. Reservation and conservation management must be based on well-established and maintained databases which are in turn based on a coherent taxonomy and sound biogoographical information. It is only by pursuing an active research programme that the necessary accurate information can be obtained and the success of the management procedures can be gauged.  相似文献   
4.
Recent debate on whether or not mahogany ( Swietenia macrophylla King) is threatened by the international timber trade has focused on the breadth of its range and estimates of the remaining stock of mahogany trees. These data are inadequate to reveal the status of mahogany populations, both because they are incomplete in areal extent and because they do not reveal population parameters such as the existence or density of young trees smaller than commercial size. However, there is sufficient information on the regeneration ecology of mahogany to indicate that under natural conditions this species regenerates in essentially even-aged stands after catastrophic disturbances destroy many or most trees, and, in the case of fires and flooding, saplings and seedlings as well. Adult mahoganies tend to survive these events, and regenerate by shedding seed onto the resulting gaps or clearings. This ecological strategy makes mahogany vulnerable to logging, first because juvenile mahoganies are not found in the understorey, and secondly because logging operations shortcircuit mahogany regeneration processes by selectively removing almost all mahogany seed sources while leaving standing competing vegetation of other species. Listing of mahogany in CITES Appendix II could provide both a mechanism to fill in gaps in information and an incentive to change current practices in favour of silvicultural management to provide for regeneration of this valuable timber species in forests subjected to logging.  相似文献   
5.
The main ecosystem services (ES) central European mountain forests provide are: protection against gravitational hazards, timber production, recreation, biodiversity conservation and carbon storage, which are all in high demand. These demands make managing mountain forests a challenging task, involving manifold synergies and conflicts between the different ES. There is therefore an urgent need for appropriate concepts and tools for support decisions in forest management and planning (FMP) to take into consideration all ES and to manage the wide variety of information types, parameters and uncertainties involved in assessing the sustainability of ES. Multi-criteria decision analysis (MCDA) provides a suitable set of methods for sustainability evaluations. In this study sustainability means the persistent fulfilment of the required ES. To address all the phases of the FMP process, MCDA and forest models should be applied together, with indicators providing the main interfaces to combine them. This paper aims to: i) review assessment approaches in order to select appropriate and widely accepted indicators for measuring and assessing the effects of different silvicultural management alternatives on forest ES, and ii) present additional standardisation approaches (value functions) for each indicator. Standardisations are necessary to make the different ES comparable and to study synergies and trade-offs between different management objectives in MCDA. The main ES in central European mountain regions are considered, with a clear focus on those indicators that are directly derivable from forest model outputs and that can refer to sustainable forest management practices. The scales considered are that of the single forest stand and of the larger forest management unit. A holistic indicator-based analysis framework for FMP in mountain forests can be built using the indicators and value functions described. The influence of different management alternatives on ES can then be evaluated, taking into consideration the instruments and information on forest management (forest models, inventory) available. All indicators are selected according to existing and approved approaches that only require data that is normally available in operational forest management. The framework can thus be an important element in developing a decision support system for FMP in mountain forests.  相似文献   
6.
Species distribution models (SDMs) are increasingly used to predict species ranges and their shifts under future scenarios of global environmental change (GEC). SDMs are thus incorporating key drivers of GEC (e.g. climate, land use) to improve predictions of species’ habitat suitability (i.e. as an indicator of species occurrence). Yet, most SDMs incorporating land use only consider dominant land cover types, largely ignoring other key aspects of land use such as land management intensity and livestock. We developed SDMs including main land use components (i.e. land cover, livestock and its management intensity) to assess their relative importance in shaping habitat suitability for the Egyptian vulture, an endangered raptor linked to livestock presence. We modelled current and future (2020 and 2050) habitat suitability for this vulture using an organism-centred approach. This allowed us to account for basic species’ habitat needs (i.e. nesting cliff) while gaining insight into our variables of interest (i.e. livestock and land cover). Once nest-site requirements were fulfilled, land use variables (i.e. openland and sheep and goat density) were the main factors determining species’ habitat suitability. Current suitable area could decrease by up to 6.81% by 2050 under scenarios with rapid economic growth but no focus on environmental conservation and rural development. Local solutions to environmental sustainability and rural development could double current habitat suitability by 2050. Land use is expected to play a key role in determining Egyptian vulture's distribution through land cover change but also through changes in livestock management (i.e. species and stocking density). Change in stocking densities (sheep and goats/km2) becomes thus an indicator of habitat suitability for this vulture in our study area. Abandonment of agro-pastoral practises (i.e. below ∼15–20 sheep and goats/km2) will negatively influence the species distribution. Nonetheless, livestock densities above these values will not further increase habitat suitability. Given the widespread impacts of livestock on ecosystems, the role of livestock and its management intensity in SDMs for other (non-livestock-related) species should be further explored.  相似文献   
7.
Appropriate final disposal of sewage sludge (SS) generated by wastewater treatment plants (WWTP) has been considered a serious environmental problem, but also a viable alternative to be applied in agriculture, once SS is rich in organic matter and nutrients. However, SS can be a source of contamination of several toxic agents. Therefore, its use in agriculture requires special care to avoid possible damage to the environment and exposed organisms. Detoxification of toxic wastes can be performed using the monitored natural attenuation, which involves biological, physical and chemical processes that frequently occur in the environment. This study aimed to assess the feasibility of decontaminating SS after different periods of monitored natural attenuation. To this end, samples of SS and associations of soil/SS with proportions of 10, 25 and 50% SS were buried for 0, 2, 6 and 12 months in holes prepared in a place free of contamination. Allium cepa was used as an indicator to assess the efficiency of the natural attenuation process. According to chemical analysis, the SS samples presented a high concentration of m- and p-cresol, especially for samples analyzed after 0 or 2 months of natural attenuation. The microorganisms present in the SS belonged to 17 different genera of bacteria, which varied in the microbial composition among samples. Both, raw SS and aqueous SS extracts induced DNA damage in A. cepa, even when associated with soil. However, this effect was observed to decline during the attenuation period, although significant effects were detected for the highest tested concentration (100% SS) even at the end of this process. These results thus indicated the necessity of applying a stabilization process associating SS and soil for a period of at least 12 months and showed that the studied raw SS is not a viable material for use as a soil reconditioner, even after natural attenuation. A. cepa test proved to be a useful tool to assess the efficiency of SS detoxification process. Therefore, we suggest that the application of SS in agriculture should be approached with caution and that the SS must be previously submitted to methodologies that evaluate its toxic potential.  相似文献   
8.
9.
The Kahuzi-Biega National Park (KBNP), situated mainly in the Eastern Highlands Ecoregion of the Upper Congo basin, is drained by the Lowa and Ulindi rivers, and some western affluents of Lake Kivu. In this study, the first list of the fish diversity of these systems is provided based on museum collections and complemented, for the Lowa River system and the western Lake Kivu affluents, with recently collected specimens (2013–2017). A total of 118 species are reported from the Lowa basin, 22 from the Ulindi basin and seven from these Lake Kivu affluents. Within the Lowa and Ulindi, respectively, five and one species, all cichlids, have been introduced. Currently, 51 species are reported from within the park, only two of which have been reported from the highlands, i.e., Amphilius kivuensis from the Luha, the source of the Luka River, and Clarias liocephalus from the headwaters of the Lake Kivu’ affluents. With a total of 30 species, Cyprinidae is by far the largest family, representing 25% of the total species diversity of the Lowa basin. It is followed by Mormyridae with 13 species (11%), Alestidae and Mochokidae with 10 species each (8%), Clariidae and Amphiliidae with eight species (7%), and Distichodontidae with six species (5%). Seven new species for science were discovered and 11 species were found to be endemic to the Lowa system. Although further exploration is needed, this underscores the importance of the KBNP in protecting the fish fauna of the Lowa basin but also highlights the park's limited coverage of the fish fauna of the Lowa basin.  相似文献   
10.
Habitat management under the auspices of conservation biological control is a widely used approach to foster conditions that ensure a diversity of predator species can persist spatially and temporally within agricultural landscapes in order to control their prey (pest) species. However, an emerging new factor, global climate change, has the potential to disrupt existing conservation biological control programs. Climate change may alter abiotic conditions such as temperature, precipitation, humidity and wind that in turn could alter the life-cycle timing of predator and prey species and the behavioral nature and strength of their interactions. Anticipating how climate change will affect predator and prey communities represents an important research challenge. We present a conceptual framework—the habitat domain concept—that is useful for understanding contingencies in the nature of predator diversity effects on prey based on predator and prey spatial movement in their habitat. We illustrate how this framework can be used to forecast whether biological control by predators will become more effective or become disrupted due to changing climate. We discuss how changes in predator–prey interactions are contingent on the tolerances of predators and prey species to changing abiotic conditions as determined by the degree of local adaptation and phenotypic plasticity exhibited by species populations. We conclude by discussing research approaches that are needed to help adjust conservation biological control management to deal with a climate future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号